Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture.

نویسندگان

  • Kimberley A Zimmerman
  • Karl P Fischer
  • Michael A Joyce
  • D Lorne J Tyrrell
چکیده

Duck hepatitis B virus (DHBV) is a model virus for human hepatitis B virus (HBV), which infects approximately 360 million individuals worldwide. Nucleoside analogs can decrease virus production by inhibiting the viral polymerase; however, complete clearance by these drugs is not common because of the persistence of the HBV episome. HBV DNA is present in the nucleus as a covalently closed circular (cccDNA) form, where it drives viral transcription and progeny virus production. cccDNA is not the direct target of antiviral nucleoside analogs and is the source of HBV reemergence when antiviral therapy is stopped. To target cccDNA, six different zinc finger proteins (ZFP) were designed to bind DNA sequences in the DHBV enhancer region. After the binding kinetics were assessed by using electrophoretic mobility shift assays and surface plasmon resonance, two candidates with dissociation constants of 12.3 and 40.2 nM were focused on for further study. The ZFPs were cloned into a eukaryotic expression vector and cotransfected into longhorn male hepatoma cells with the plasmid pDHBV1.3, which replicates the DHBV life cycle. In the presence of each ZFP, viral RNA was significantly reduced, and protein levels were dramatically decreased. As a result, intracellular viral particle production was also significantly decreased. In summary, designed ZFPs are able to bind to the DHBV enhancer and interfere with viral transcription, resulting in decreased production of viral products and progeny virus genomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duck Hepatitis B Virus cccDNA Amplification Efficiency in Natural Infection Is Regulated by Virus Secretion Efficiency

Previous mutation based studies showed that ablating synthesis of viral envelope proteins led to elevated hepadnaviral covalently closed circular DNA (cccDNA) amplification, but it remains unknown how cccDNA amplification is regulated in natural hepadnaviral infection because of a lack of research system. In this study we report a simple procedure to prepare two identical duck hepatitis B virus...

متن کامل

Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier.

For the study of hepatitis B virus infection, no permissive cell line or small animal is available. Stably transfected cell lines and transgenic mice which contain hepadnavirus genomes produce virus, but--unlike in natural infection--from an integrated viral transcription template. To transfer hepadnavirus genomes across the species barrier, we developed adenovirus vectors in which 1.3-fold-ove...

متن کامل

Predictors of Hepatitis B Cure Using Gene Therapy to Deliver DNA Cleavage Enzymes: A Mathematical Modeling Approach

Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hep...

متن کامل

Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification.

Primary duck hepatocytes were infected with a mutant duck hepatitis B virus defective in envelope protein but competent for viral DNA synthesis. Cells infected by this mutant accumulated higher levels of viral covalently closed, circular DNA (cccDNA) than those infected by wild-type virus. The accumulation of high levels of cccDNA was due to a failure of the mutant-infected cells to suppress de...

متن کامل

Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein.

Hepatitis B virus (HBV) contains a small, partially double-stranded, relaxed circular (RC) DNA genome. RC DNA needs to be converted to covalently closed circular (CCC) DNA, which serves as the template for all viral RNA transcription. As a first step toward understanding how CCC DNA is formed, we analyzed the viral and host factors that may be involved in CCC DNA formation, using transient and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 82 16  شماره 

صفحات  -

تاریخ انتشار 2008